- Mempelajari cara kerja sensor.
- Mempelajari prinsip kerja kontrol tanaman hidroponik bayam di rooftop, menggunakan Soil Moisture sensor, Rain sensor, Sound sensor, PIR sensor, dan LDR
- Mempelajari simulasi rangkaian kontrol tanaman hidroponik bayam di rooftop menggunakan Soil Moisture sensor, Rain sensor, Sound sensor, PIR sensor, dan LDR
A. Alat:
1. Power Suply
2. Voltmeter DC
DC Voltemeter merupakan alat ukur yang digunakan untuk mengukur tegangan DC.
3. Baterai
1. Resistor
Specifications | |
Resistance (Ohms) | 10K, 500K |
Power (Watts) | 0.25W, 1/4W |
Tolerance | ±5% |
Packaging | Bulk |
Composition | Carbon Film |
Temperature Coefficient | 350ppm/°C |
Lead Free Status | Lead Free |
RoHS Status | RoHS Compliant |
Data sheet resistor:
3. Induktor
4. Dioda 1N4001
- Package Type: Available in DO-41 & SMD Packages
- Diode Type: Silicon Rectifier General Usage Diode
- Max Repetitive Reverse Voltage is: 1000 Volts
- Average Fwd Current: 1000mA
- Non-repetitive Max Fwd Current: 30A
- Max Power Dissipation is: 3W
- Max Storage & Operating temperature Should Be: -55 to +175 Centigrade
Nomor Pin | Nama Pin | Deskripsi |
1 | Anoda | Arus selalu Masuk melalui Anoda |
2 | Katoda | Arus selalu Keluar melalui Katoda |
Data Sheet Transistor
Grafik Respon:
6. OP AMP LM358
- Ini terdiri dari dua op-amp internal dan frekuensi dikompensasi untuk gain kesatuan
- Gain tegangan besar adalah 100 dB
- Lebar pita lebar adalah 1MHz
- Jangkauan pasokan listrik yang luas termasuk pasokan listrik tunggal dan ganda
- Rentang catu daya tunggal adalah dari 3V ke 32V
- Jangkauan pasokan listrik ganda adalah dari + atau -1.5V ke + atau -16V
- Penyaluran arus pasokan sangat rendah, yaitu 500 μA
- 2mV tegangan rendah i / p offset
- Mode umum rentang tegangan i / p terdiri dari ground
- Tegangan catu daya dan diferensial i / p tegangan serupa ayunan tegangan o / p besar
- Wide supply voltage range: 3.0V to 15V
- Low power: 100 nW (typ.)
- Medium speed operation: tPHL = tPLH = 40 ns (typ.) at CL = 15 pF, 10V supply
- High noise immunity 0.45 VCC (typ.)
B. Konfigurasi PIN
Pin No | Pin Name | Description |
---|---|---|
1 | A0 | Input 1 of XOR gate 0 |
2 | B0 | Input 2 of XOR gate 0 |
3 | Q0 | The output of XOR gate 0 |
4 | Q1 | The output of XOR gate 1 |
5 | A1 | Input 1 of XOR gate 1 |
6 | B1 | Input 2 of XOR gate 1 |
7 | VSS | Source Supply |
8 | A2 | Input 1 of XOR gate 2 |
9 | B2 | Input 2 of XOR gate 2 |
10 | Q2 | The output of XOR gate 2 |
11 | Q3 | The output of or gate 3 |
12 | A3 | Input 1 of OR gate 3 |
13 | B3 | Input 2 of OR gate 3 |
14 | VDD | Drain Supply |
- Type: Rotary a.k.a Radio POT
- Available in different resistance values like 500Ω, 1K, 2K, 5K, 10K, 22K, 47K, 50K, 100K, 220K, 470K, 500K, 1 M.
- Power Rating: 0.3W
- Maximum Input Voltage: 200Vdc
- Rotational Life: 2000K cycles
Pin No. | Pin Name | Description |
1 | Fixed End | This end is connected to one end of the resistive track |
2 | Variable End | This end is connected to the wiper, to provide variable voltage |
3 | Fixed End | This end is connected to another end of the resistive track |
A. Spesifikasi
- Available in two modes Common Cathode (CC) and Common Anode (CA)
- Available in many different sizes like 9.14mm,14.20mm,20.40mm,38.10mm,57.0mm and 100mm (Commonly used/available size is 14.20mm)
- Available colours: White, Blue, Red, Yellow and Green (Res is commonly used)
- Low current operation
- Better, brighter and larger display than conventional LCD displays.
- Current consumption : 30mA / segment
- Peak current : 70mA
B. Konfigurasi pin
Pin Number | Pin Name | Description |
1 | e | Controls the left bottom LED of the 7-segment display |
2 | d | Controls the bottom most LED of the 7-segment display |
3 | Com | Connected to Ground/Vcc based on type of display |
4 | c | Controls the right bottom LED of the 7-segment display |
5 | DP | Controls the decimal point LED of the 7-segment display |
6 | b | Controls the top right LED of the 7-segment display |
7 | a | Controls the top most LED of the 7-segment display |
8 | Com | Connected to Ground/Vcc based on type of display |
9 | f | Controls the top left LED of the 7-segment display |
10 | g | Controls the middle LED of the 7-segment display |
11. Decoder (IC 7447)
A. Spesifikasi
- has a broader Voltage range
- A variety of operating conditions
- internal pull-ups ensure you don't need external resistors
- Four input lines and seven output lines
- input clamp diode hence no need for high-speed termination
- comes with open collector output
B. Konfigurasi pin:
Data Sheet Decoder:12. Encoder (IC 74147)
A. Spesifikasi
- It operates at 4.5V to 5.5 DC voltage.
- It delivers output current from low 70µA to high 8mA
- It operates at the temperature from -55℃ to 70℃
- Logic Case packaging type: DIP
- Mounting Type: Through Hole
- Pin No. 1 - 4 (input)
- Pin No. 2 - 5 (input)
- Pin No. 3 - 6 (input)
- Pin No. 4 - 7 (input)
- Pin No. 5 - 8 (input)
- Pin No. 6 - C (output)
- Pin No. 7 - B (output)
- Pin No. 8 - Ground (GND)
- Pin No. 9 - A (output)
- Pin No. 10 - 9 (input)
- Pin No. 11 - 1 (input)
- Pin No. 12 - 2 (input)
- Pin No. 13 - 3 (input)
- Pin No. 14 - D (output)
- Pin No. 15 - Not Connected (NC)
- Pin No. 16 - Vcc or positive power supply
13. Relay
Nomor PIN | Nama Pin | Deskripsi |
1 | Coil End 1 | Digunakan untuk memicu (On / Off) Relay, Biasanya satu ujung terhubung ke 12V dan ujung lainnya ke ground |
2 | Coil End 2 | Digunakan untuk memicu (On / Off) Relay, Biasanya satu ujung terhubung ke 12V dan ujung lainnya ke ground |
3 | Common (COM) | Common terhubung ke salah satu Ujung Beban yang akan dikontrol |
4 | Normally Close (NC) | Ujung lain dari beban terhubung ke NO atau NC. Jika terhubung ke NC beban tetap terhubung sebelum pemicu |
5 | Normally Open (NO) | Ujung lain dari beban terhubung ke NO atau NC. Jika terhubung ke NO, beban tetap terputus sebelum pemicu |
- Trigger Voltage (Voltage across coil) : 5V DC
- Trigger Current (Nominal current) : 70mA
- Maximum AC load current: 10A @ 250/125V AC
- Maximum DC load current: 10A @ 30/28V DC
- Compact 5-pin configuration with plastic moulding
- Operating time: 10msec Release time: 5msec
- Maximum switching: 300 operating/minute (mechanically)
No: | Pin Name | Description |
1 | Terminal 1 | A normal DC motor would have only two terminals. Since these terminals are connected together only through a coil they have not polarity. Revering the connection will only reverse the direction of the motor |
2 | Terminal 2 |
B. DC Motor Specifications
- Standard 130 Type DC motor
- Operating Voltage: 4.5V to 9V
- Recommended/Rated Voltage: 6V
- Current at No load: 70mA (max)
- No-load Speed: 9000 rpm
- Loaded current: 250mA (approx)
- Rated Load: 10g*cm
- Motor Size: 27.5mm x 20mm x 15mm
- Weight: 17 grams
A. Spesifikasi :
- Superior weather resistance
- 5mm Round Standard Directivity
- UV Resistant Eproxy
- Forward Current (IF): 30mA
- Forward Voltage (VF): 1.8V to 2.4V
- Reverse Voltage: 5V
- Operating Temperature: -30℃ to +85℃
- Storage Temperature: -40℃ to +100℃
- Luminous Intensity: 20mcd
B. Konfigurasi Pin :
- Pin 1 : Positive terminal of LED
- Pin 2 : Negative terminal of LED
16. Ground Ground Berfungsi sebagai untuk meniadakan beda potensial dengan mengalirkan arus sisa dari kebocoran tegangan atau arus pada rangkaian.
- Operating Voltage: 3.3V to 5V DC
- Operating Current: 15mA
- Output Digital - 0V to 5V, Adjustable trigger level from preset
- Output Analog - 0V to 5V based on infrared radiation from fire flame falling on the sensor
- LEDs indicating output and power
- PCB Size: 3.2cm x 1.4cm
- LM393 based design
- Easy to use with Microcontrollers or even with normal Digital/Analog IC
- Small, cheap and easily available
Pin Name | Description |
VCC |
The Vcc pin powers the module, typically with +5V |
GND | Power Supply Ground |
DO | Digital Out Pin for Digital Output. |
AO | Analog Out Pin for Analog Output |
- Basah : tegangan output akan turun
- Kering : tegangan output akan naik
- Kelembaban tanah melebihi dari nilai ambang maka sprinkler (penyiram tanaman) akan padam
- Kelembaban tanah kurang dari nilai ambang maka spinkler (penyiram tanaman) akan menyala
- Tegangan kerja: DC 3.3-5V
- Sensitivitas yang Dapat Disesuaikan
- Dimensi: 32 x 17 mm
- Indikasi keluaran sinyal
- Output sinyal saluran tunggal
- Dengan lubang baut penahan, pemasangan yang mudah
- Mengeluarkan level rendah dan sinyal menyala ketika ada suara
- Output berupa digital switching output (0 dan 1 high dan low)
20. LDR
21. Sensor PIR
A. Spesifikasi:
- Vin : DC 5V - 9V
- Radius : 180 derajat
- Jarak deteksi : 5 - 7 meter
- Output : Digital TTL
- Memiliki setting sensitivitas
- Memiliki setting time delay
- Dimensi : 3,2 cm x 2,4 cm x 2,3 cm
- Berat : 10 gr
2.GND: ground
- Adoptshigh quality of RF-04 double sidedmaterial.
- Area:5cm x 4cm nickel plateon side,
- Anti-oxidation,anti-conductivity, with long use time;
- Comparator output signal clean waveform is good, driving ability, over 15mA;
- Potentiometer adjust the sensitivity;
- Working voltage 5V;
- Output format: Digital switching output (0 and 1) and analog voltage output AO;
- With bolt holes for easy installation;
- Small board PCB size: 3.2cm x 1.4cm;
- Usesa wide voltage LM393 comparator
C. Grafik Respon
- RESISTOR
Resistor merupakan komponen elektronika dasar yang digunakan untuk membatasi jumlah arus yang mengalir dalam satu rangkaian.Sesuai dengan namanya, resistor bersifat resistif dan umumnya terbuat dari bahan karbon. Resistor memiliki simbol seperti gambar dibawah ini :
Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan Hukum OHM :
Seri : Rtotal = R1 + R2 + R3 + ….. + Rn
Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n
Paralel: 1/Rtotal = 1/R1 + 1/R2 + 1/R3 + ….. + 1/Rn
Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n
- DIODA
Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).
A. Kondisi tanpa tegangan
Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p. Elektron-elektron tersebut akan menempati suatu tempat di sisi p yang disebut dengan holes. Pergerakan elektron-elektron tersebut akan meninggalkan ion positif di sisi n, dan holes yang terisi dengan elektron akan menimbulkan ion negatif di sisi p. Ion-ion tidak bergerak ini akan membentuk medan listrik statis yang menjadi penghalang pergerakan elektron pada dioda.
Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif. Hilangnya penghalang-penghalang tersebut akan memungkinkan pergerakan elektron di dalam dioda, sehingga arus listrik dapat mengalir seperti pada rangkaian tertutup.
C. Kondisi tegangan negatif (Reverse-bias)
Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Pemberian tegangan negatif akan membuat ion-ion negatif tertarik ke sisi katoda (n-type) yang diberi tegangan positif, dan ion-ion positif tertarik ke sisi anoda (p-type) yang diberi tegangan negatif. Pergerakan ion-ion tersebut searah dengan medan listrik statis yang menghalangi pergerakan elektron, sehingga penghalang tersebut akan semakin tebal oleh ion-ion. Akibatnya, listrik tidak dapat mengalir melalui dioda dan rangkaian diibaratkan menjadi rangkaian terbuka.
3. Rumus
- Transistor NPN
Rumus dari Transitor adalah :
hFE = iC/iB
dimana, iC = perubahan arus kolektor
iB = perubahan arus basis
hFE = arus yang dicapai
Karakteristik Input
Transistor adalah komponen aktif yang menggunakan aliran electron sebagai prinsip kerjanya didalam bahan. Sebuah transistor memiliki tiga daerah doped yaitu daerah emitter, daerah basis dan daerah disebut kolektor. Transistor ada dua jenis yaitu NPN dan PNP. Transistor memiliki dua sambungan: satu antara emitter dan basis, dan yang lain antara kolektor dan basis. Karena itu, sebuah transistor seperti dua buah dioda yang saling bertolak belakang yaitu dioda emitter-basis, atau disingkat dengan emitter dioda dan dioda kolektor-basis, atau disingkat dengan dioda kolektor.
Bagian emitter-basis dari transistor merupakan dioda, maka apabila dioda emitter-basis dibias maju maka kita mengharapkan akan melihat grafik arus terhadap tegangan dioda biasa. Saat tegangan dioda emitter-basis lebih kecil dari potensial barriernya, maka arus basis (Ib) akan kecil. Ketika tegangan dioda melebihi potensial barriernya, arus basis (Ib) akan naik secara cepat.
Karakteristik Output
Sebuah transistor memiliki empat daerah operasi yang berbeda yaitu daerah aktif, daerah saturasi, daerah cutoff, dan daerah breakdown. Jika transistor digunakan sebagai penguat, transistor bekerja pada daerah aktif. Jika transistor digunakan pada rangkaian digital, transistor biasanya beroperasi pada daerah saturasi dan cutoff. Daerah breakdown biasanya dihindari karena resiko transistor menjadi hancur terlalu besar.
Gelombang I/O Transistor
Bagian emitter-basis dari transistor merupakan dioda, maka apabila dioda emitter-basis dibias maju maka kita mengharapkan akan melihat grafik arus terhadap tegangan dioda biasa. Saat tegangan dioda emitter-basis lebih kecil dari potensial barriernya, maka arus basis (Ib) akan kecil. Ketika tegangan dioda melebihi potensial barriernya, arus basis (Ib) akan naik secara cepat.
Sebuah transistor memiliki empat daerah operasi yang berbeda yaitu daerah aktif, daerah saturasi, daerah cutoff, dan daerah breakdown. Jika transistor digunakan sebagai penguat, transistor bekerja pada daerah aktif. Jika transistor digunakan pada rangkaian digital, transistor biasanya beroperasi pada daerah saturasi dan cutoff. Daerah breakdown biasanya dihindari karena resiko transistor menjadi hancur terlalu besar.
- KAPASITOR
- INDUKTOR
Kemampuan Induktor atau Coil dalam menyimpan Energi Magnet disebut dengan Induktansi yang satuan unitnya adalah Henry (H). Satuan Henry pada umumnya terlalu besar untuk Komponen Induktor yang terdapat di Rangkaian Elektronika. Oleh Karena itu, Satuan-satuan yang merupakan turunan dari Henry digunakan untuk menyatakan kemampuan induktansi sebuah Induktor atau Coil. Satuan-satuan turunan dari Henry tersebut diantaranya adalah milihenry (mH) dan microhenry (µH). Simbol yang digunakan untuk melambangkan Induktor dalam Rangkaian Elektronika adalah huruf “L”.
Simbol Induktor
Berikut ini adalah Simbol-simbol Induktor :
Simbol Induktor di proteus :
Nilai Induktansi sebuah Induktor (Coil) tergantung pada 4 faktor, diantaranya adalah :
- Jumlah Lilitan, semakin banyak lilitannya semakin tinggi Induktasinya
- Diameter Induktor, Semakin besar diameternya semakin tinggi pula induktansinya
- Permeabilitas Inti, yaitu bahan Inti yang digunakan seperti Udara, Besi ataupun Ferit.
- Ukuran Panjang Induktor, semakin pendek inductor (Koil) tersebut semakin tinggi induktansinya.
- Air Core Inductor – Menggunakan Udara sebagai Intinya
- Iron Core Inductor – Menggunakan bahan Besi sebagai Intinya
- Ferrite Core Inductor – Menggunakan bahan Ferit sebagai Intinya
- Torroidal Core Inductor – Menggunakan Inti yang berbentuk O Ring (bentuk Donat)
- Laminated Core Induction – Menggunakan Inti yang terdiri dari beberapa lapis lempengan logam yang ditempelkan secara paralel. Masing-masing lempengan logam diberikan Isolator.
- Variable Inductor – Induktor yang nilai induktansinya dapat diatur sesuai dengan keinginan. Inti dari Variable Inductor pada umumnya terbuat dari bahan Ferit yang dapat diputar-putar.
Fungsi Induktor (Coil) dan Aplikasinya
Fungsi-fungsi Induktor atau Coil diantaranya adalah dapat menyimpan arus listrik dalam medan magnet, menapis (Filter) Frekuensi tertentu, menahan arus bolak-balik (AC), meneruskan arus searah (DC) dan pembangkit getaran serta melipatgandakan tegangan.
Berdasarkan Fungsi diatas, Induktor atau Coil ini pada umumnya diaplikasikan :
- Sebagai Filter dalam Rangkaian yang berkaitan dengan Frekuensi
- Transformator (Transformer)
- Motor Listrik
- Solenoid
- Relay
- Speaker
- Microphone
- OP-AMP
Karakteristik IC OpAmp
- Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)
- Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)
- Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)
- Impedansi Output (Output Impedance ) atau Zout = 0 (nol)
- Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)
- Karakteristik tidak berubah dengan suhu
Inverting Amplifier
Rumus:
NonInverting
Ruus:
Komparator
Rumus:
Adder
Rumus:
Bentuk Gelombang
- GERBANG NOT (IC 7404)
Gerbang NOT atau disebut juga "NOT GATE" atau Inverter (Gerbang Pembalik) adalah jenis gerbang logika yang hanya memiliki satu input (Masukan) dan satu output (keluaran). Dikatakan Inverter (gerbang pembalik) karena gerbang ini akan menghasilkan nilai ouput yang berlawanan dengan nilai inputnya . Untuk lebih jelasnya perhatikan simbol dan tabel kebenaran gerbang NOT berikut.
Pada gerbang logika NOT, simbol yang menandakan operasi gerbang logika NOT adalah tanda minus (-) diatas variabel, perhatikan gambar diatas.
Perhatikan tabel kebenaran gerbang NOT. Cara cepat untuk mengingat tabelnya adalah dengan mengingat pernyataan berikut. "Gerbang NOT akan menghasilkan output (keluaran) logika 1 bila variabel input (masukan) bernilai logika 0" sebalikanya "Gerbang NOT akan menghasilkan keluaran logika 0 bila input (masukan) bernilai logika 1"
Tabel kebenaran untuk logika Ex-OR adalah
- DECODER (IC 7447)
IC BCD 7447 merupakan IC yang bertujuan mengubah data BCD (Binary Coded Decimal) menjadi suatu data keluaran untuk seven segment. IC 7447 yang bekerja pada tegangan 5V ini khusus untuk menyalakan seven segment dengan konfigurasi common anode. Sedangkan untuk menyalakan tampilan seven segment yang bekerja pada konfigurasi common cathode menggunakan IC BCD 7448.
IC ini sangat membantu untuk meringkas masukan seven segmen dengan jumlah 7 pin, sedangkan jika menggunakan BCD cukup dengan 4 bit masukan. IC BCD bisa juga disebut dengan driver seven segment. Berikut konfigurasi Pin IC 7447.
Konfigurasi Pin Decoder:
a. Pin Input IC BCD, memiliki fungsi sebagai masukan IC BCD yang terdiri dari 4 Pin, nama pin masukan BCD dilangkan dengan huruf kapital yaitu A, B, C dan D. Pin input berkeja dengan logika High=1.
b. Pin Ouput IC BCD, memiliki fungsi untuk mengaktifkan seven segmen sesuai data yang diolah dari pin input. Pin output berjumlah 7 pin yang namanya dilambangkan dengan aljabar huruf kecil yaitu, b, c, d, e, f dan g. Pin Output bekerja dengan logika low=0. Karena itulah IC 7447 digunakan untuk seven segment common anode.
c. Pin LT (Lamp Test) memiliki fungsi untuk mengaktifkan semua output menjadi aktif low, sehingga semua led pada seven segmen menyala dan menampilkan angka 8. Pin LT akan aktif jika diberi logika low. Pin ini juga digunakan untuk mengetes kondisi LED pada seven segment.
d. Pin RBI (Ripple Blanking Input) memiliki fungsi untuk menahan data input (disable input), pin RBI akan aktif jika diberi logika low. Sehingga seluruh pin output akan berlogika High, dan seven segment tidak aktif.
e. Pin RBO (Ripple blanking Output) memiliki fungsi untuk menahan data output (disable output), pin RBO ini akan aktif jika diberikan logika Low. Sehingga seluruh pin output akan berlogika High, dan seven segment tidak aktif.
Pada aplikasi IC dekoder 7447, ketiga pin (LT, RBI dan RBO) harus diberi logika HIGH=1 agar tidak aktif. Baik IC 7447 atau 7448 pada bagian output perlu dipasang resistor untuk membatasi arus yang keluar sehingga led pada seven segment bekerja secara optimal. Berikut ini rangkaian IC dekoder 7448 untuk konfigurasi seven segment common cathode.
- ENCODER 74147
- BUZZER
Buzzer adalah sebuah komponen elektronika yang berfungsi untuk mengubah getaran listrik menjadi getaran suara getaran listrik menjadi getaran suara. Pada dasarnya prinsip kerja buzzer hampir sama dengan loudspeaker, jadi buzzer juga terdiri dari kumparan yang terpasang pada diafragma dan kemudian kumparan tersebut dialiri arus sehingga menjadi elektromagnet, kumparan tadi akan tertarik ke dalam atau keluar, tergantung dari arah arus dan polaritas magnetnya, karena kumparan dipasang pada diafragma maka setiap gerakan kumparan akan menggerakkan diafragma secara bolak-balik sehingga membuat udara bergetar yang akan menghasilkan suara. Buzzer biasa digunakan sebagai indikator bahwa proses telah selesai atau terjadi suatu kesalahan pada sebuah alat (alarm).
- RELAY
- Apabila coil diberikan arus listrik, maka akan timbul gaya elektromagnetik yang dapat menarik armature untuk merubah switch contact point.
- Apabila coil tersebut sudah tidak dialiri arus listrik, maka Armature akan kembali lagi ke posisi Normally Close.
- Umumnya, coil yang digunakan oleh relay untuk mengubah switch contact point ke posisi NC hanya membutuhkan arus listrik yang kecil.
- 7 SEGMENT ANODA
Seven segment merupakan bagian-bagian yang digunakan untuk menampilkan angka atau bilangan decimal. Seven segment tersebut terbagi menjadi 7 batang LED yang disusun membentuk angka 8 dengan menggunakan huruf a-f yang disebut DOT MATRIKS. Setiap segment ini terdiri dari 1 atau 2 LED (Light Emitting Dioda). Seven segment bisa menunjukan angka-angka desimal serta beberapa bentuk tertentu melalui gabungan aktif atau tidaknya LED penyususnan dalam seven segment.
Supaya memudahkan penggunaannnya biasanya memakai sebuah sebuah seven segment driver yang akan mengatur aktif atau tidaknya led-led dalam seven segment sesuai dengan inputan biner yang diberikan. Bentuk tampilan modern disusun sebagai metode 7 bagian atau dot matriks. Jenis tersebut sama dengan namanya, menggunakan sistem tujuh batang led yang dilapis membentuk angka 8 seperti yang ditunjukkan pada gambar di atas. Huruf yang dilihatkan dalam gambar itu ditetapkan untuk menandai bagian-bagian tersebut.
Dengan menyalakan beberapa segmen yang sesuai, akan dapat diperagakan digit-digit dari 0 sampai 9, dan juga bentuk huruf A sampai F (dimodifikasi). Sinyal input dari switches tidak dapat langsung dikirimkan ke peraga 7 bagian, sehingga harus menggunakan decoder BCD (Binary Code Decimal) ke 7 segmen sebagai antar muka. Decoder tersebut terbentuk dari pintu-pintu akal yang masukannya berbetuk digit BCD dan keluarannya berupa saluran-saluran untuk mengemudikan tampilan 7 segmen.
Tabel Pengaktifan Seven Segment Display
- LIGHT EMITTING DIODE (LED)
Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor. Warna-warna Cahaya yang dipancarkan oleh LED tergantung pada jenis bahan semikonduktor yang dipergunakannya. LED juga dapat memancarkan sinar inframerah yang tidak tampak oleh mata seperti yang sering kita jumpai pada Remote Control TV ataupun Remote Control perangkat elektronik lainnya.
Bentuk LED mirip dengan sebuah bohlam (bola lampu) yang kecil dan dapat dipasangkan dengan mudah ke dalam berbagai perangkat elektronika. Berbeda dengan Lampu Pijar, LED tidak memerlukan pembakaran filamen sehingga tidak menimbulkan panas dalam menghasilkan cahaya. Oleh karena itu, saat ini LED (Light Emitting Diode) yang bentuknya kecil telah banyak digunakan sebagai lampu penerang dalam LCD TV yang mengganti lampu tube.
- LIGHT EMITTING DIODE (LED)
Simbol dan Bentuk LED (Light Emitting Diode)
Seperti dikatakan sebelumnya, LED merupakan keluarga dari Dioda yang terbuat dari Semikonduktor. Cara kerjanya pun hampir sama dengan Dioda yang memiliki dua kutub yaitu kutub Positif (P) dan Kutub Negatif (N). LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda.
LED terdiri dari sebuah chip semikonduktor yang di doping sehingga menciptakan junction P dan N. Yang dimaksud dengan proses doping dalam semikonduktor adalah proses untuk menambahkan ketidakmurnian (impurity) pada semikonduktor yang murni sehingga menghasilkan karakteristik kelistrikan yang diinginkan. Ketika LED dialiri tegangan maju atau bias forward yaitu dari Anoda (P) menuju ke Katoda (K), Kelebihan Elektron pada N-Type material akan berpindah ke wilayah yang kelebihan Hole (lubang) yaitu wilayah yang bermuatan positif (P-Type material). Saat Elektron berjumpa dengan Hole akan melepaskan photon dan memancarkan cahaya monokromatik (satu warna).
LED atau Light Emitting Diode yang memancarkan cahaya ketika dialiri tegangan maju ini juga dapat digolongkan sebagai Transduser yang dapat mengubah energi listrik menjadi energi cahaya
Seperti dikatakan sebelumnya, LED merupakan keluarga dari Dioda yang terbuat dari Semikonduktor. Cara kerjanya pun hampir sama dengan Dioda yang memiliki dua kutub yaitu kutub Positif (P) dan Kutub Negatif (N). LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda.
LED terdiri dari sebuah chip semikonduktor yang di doping sehingga menciptakan junction P dan N. Yang dimaksud dengan proses doping dalam semikonduktor adalah proses untuk menambahkan ketidakmurnian (impurity) pada semikonduktor yang murni sehingga menghasilkan karakteristik kelistrikan yang diinginkan. Ketika LED dialiri tegangan maju atau bias forward yaitu dari Anoda (P) menuju ke Katoda (K), Kelebihan Elektron pada N-Type material akan berpindah ke wilayah yang kelebihan Hole (lubang) yaitu wilayah yang bermuatan positif (P-Type material). Saat Elektron berjumpa dengan Hole akan melepaskan photon dan memancarkan cahaya monokromatik (satu warna).
LED atau Light Emitting Diode yang memancarkan cahaya ketika dialiri tegangan maju ini juga dapat digolongkan sebagai Transduser yang dapat mengubah energi listrik menjadi energi cahaya
- MOTOR DC
Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), ArmatureWinding (Kumparan Jangkar), Commutator (Komutator)dan Brushes (kuas/sikat arang).
Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti
Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.
- VOLTMETER
Volt meter DC merupakan alat ukur yang berfungsi untuk mengetahui beda potensial tegangan DC antara 2 titik pada suatu beban listrik atau rangkaian elektronika.
- GROUND
Ground Berfungsi sebagai untuk meniadakan beda potensial dengan mengalirkan arus sisa dari kebocoran tegangan atau arus pada rangkaian- BATERAI
- BATERAI
- POWER SUPPLY
- GENERATOR DC
Generator DC merupakan sebuah perangkat mesin listrik dinamis yang mengubah energi mekanis menjadi energi listrik. Generator DC menghasilkan arus DC / arus searah. Generator DC dibedakan menjadi beberapa jenis berdasarkan dari rangkaian belitan magnet atau penguat eksitasinya terhadap jangkar (anker), jenis generator DC yaitu: |
|
Bagian yang harus menjadi perhatian untuk perawatan secara rutin adalah sikat arang yang akan memendek dan harus diganti secara periodic / berkala. Komutator harus dibersihkan dari kotoran sisa sikat arang yang menempel dan serbuk arang yang mengisi celah-celah komutator, gunakan amplas halus untuk membersihkan noda bekas sikat arang. Prinsip Kerja generator DC Prinsip kerja suatu generator arus searah berdasarkan hukum Faraday : Dengan lain perkataan, apabila suatu konduktor memotong garis-garis fluksi magnetik yang berubah-ubah, maka GGL akan dibangkitkan dalam konduktor itu. Jadi syarat untuk dapat dibangkitkan GGL adalah :
|
Prinsip Kerja Generator DC |
|
Untuk menentukan arah arus pada setiap saat, berlaku pada kaidah tangan kanan :
Potensiometer (POT) adalah salah satu jenis Resistor yang Nilai Resistansinya dapat diatur sesuai dengan kebutuhan Rangkaian Elektronika ataupun kebutuhan pemakainya. Potensiometer merupakan Keluarga Resistor yang tergolong dalam Kategori Variable Resistor. Secara struktur, Potensiometer terdiri dari 3 kaki Terminal dengan sebuah shaft atau tuas yang berfungsi sebagai pengaturnya.
LDR (Light Dependent Resistor) merupakan salah satu komponen resistor yang nilai resistansinya akan berubah-ubah sesuai dengan intensitas cahaya yang mengenai sensor ini. LDR juga dapat digunakan sebagai sensor cahaya. Perlu diketahui bahwa nilai resistansi dari sensor ini sangat bergantung pada intensitas cahaya. Semakin banyak cahaya yang mengenainya, maka akan semakin menurun nilai resistansinya. Sebaliknya jika semakin sedikit cahaya yang mengenai sensor (gelap), maka nilai hambatannya akan menjadi semakin besar sehingga arus listrik yang mengalir akan terhambat. Grafik
Logo Sound Sensor di proteus:
Soil Moisture Sensor (Sensor YL) adalah sebuah jenis sensor yang fungsinya adalah untuk mengukur kelembaban tanah, prinsip operasinya adalah mendeteksi kelembaban di sekitar tanah, meskipun secara teknis sensor ini tidak dapat mendeteksi kelembaban tanah. Sensor mengenakan dua konduktor yang di buat untuk mengalirkan arus melalui tanah yang di ukur kelembabanya dan kemudian sensor mulai membaca nilai resistansi untuk menentukan tingkat kelembabanpada tanah. Semakin banyak air di dalam tanah, semakin tinggi nilai hambatannya, dan semakin tinggi nilainya, semakin rendah hambatannya. Sensor kelembaban tanah di aplikasi Anda membutuhkan catu daya 5V dan tegangan output 04.2V. Oleh karena itu, Soil Moisture Sensor di bagi menjadi dua bagian, yaitu satu papan elektronik dan yang lainnya probe yang di lengkapi dengan dengan dua potensio, fungsinya yaitu untuk pendeteksian kadar air. Ini termasuk sensor analogatau biasanya di sebut A0. Sensor akam mendeteksi dan mengirimkan nilai kelembaban dari tanaj tersebut dalam bentuk persentase seperti berikut: Adapun keterangan dari masing - masing pin yang digunakan adalah : Jika menggunakan pin Digital Output maka keluaran hanya bernilai 1 atau 0 dan harus inisalisasi port digital sebagai Input (pinMode(pin, INPUT)). Sedangkan jika menggunkan pin Analog Output maka keluaran yang akan muncul adalah sebauah angka diantara 0 sampai 1023 dan inisialisasi hanya perlu menggunkan analogRead(pin). Spesifikasi Operating Voltage: 3.3V to 5V DC Operating Current: 15mA Output Digital - 0V to 5V, Adjustable trigger level from preset Output Analog - 0V to 5V based on infrared radiation from fire flame falling on the sensor LEDs indicating output and power PCB Size: 3.2cm x 1.4cm LM393 based design Easy to use with Microcontrollers or even with normal Digital/Analog IC Small, cheap and easily available Cara Kerja: → Sensor ini terutama memanfaatkan kapasitansi untuk mengukur kadar air tanah (permitivitas dielektrik). Cara kerja sensor ini dapat dilakukan dengan memasukkan sensor ini ke dalam tanah dan status kandungan air dalam tanah dapat dilaporkan dalam bentuk persen.Basah : tegangan output akan turun Kering : tegangan output akan naik Tegangan tersebut dapat dicek menggunakan voltmeter DC. Dengan pembacaan pada pin ADC pada microcontroller dengan tingkat ketelitian 10 bit, maka akan terbaca nilai dari range 0 – 1023. Sedangkan untuk Output Digital dapat diliat pada nyala led Digital output menyala atau tidak dengan mensetting nilai ambang pada potensiometer.Kelembaban tanah melebihi dari nilai ambang maka sprinkler (penyiram tanaman) akan padamKelembaban tanah kurang dari nilai ambang maka spinkler (penyiram tanaman) akan menyalaGrafik Sensor:
Sensor kelembaban terdiri dari dua probe yang digunakan untuk mendeteksi kelembaban tanah. Probe kelembaban dilapisi dengan emas imersi yang melindungi nikel dari oksidasi. Dua probe ini digunakan untuk mengalirkan arus melalui tanah, dan kemudian sensor membaca resistansi untuk mendapatkan nilai kelembaban. Rangkaian J1 dan R5 ialah voltage divider rumus dari voltage divider ialah: Vout berada di bagian + probe atau + J1, J1 merupakan probe emas dari sensor tersebut, dimana resistansinya akan berubah sesuai dengan kelembaban tanah yang terbaca oleh probe. Jadi J1 akan berubah sesuai dengan jumlah air pada tanah tersebut. Modul sensor kelembaban terdiri dari empat pin, yaitu VCC, GND, DO, AO. Pin output digital terhubung ke pin output IC komparator LM393, sementara pin analog terhubung ke sensor kelembaban. Diagram rangkaian internal dari modul sensor kelembaban ini. pin Output Analog/Digital dihubungkan dari modul ke pin Analog/Digital mikrokontroler. Hubungkan pin VCC dan GND ke pin 5V dan GND pada mikrokontroler. Setelah itu, masukkan probe ke dalam tanah. Ketika ada lebih banyak air dalam tanah, itu akan menghantarkan lebih banyak listrik, yang berarti resistansinya rendah dan tingkat kelembabannya tinggi. Kandungan air atau kadar air adalah jumlah air yang terkandung dalam suatu bahan, seperti tanah (disebut kelembapan tanah), batuan, keramik, buah, atau kayu. Kandungan air digunakan dalam berbagai bidang ilmiah dan teknis, dan dinyatakan sebagai rasio, yang dapat berkisar dari 0 (benar-benar kering) hingga nilai porositas bahan pada saturasi. Ini dapat dinyatakan dalam basis volumetrik atau massa (gravimetrik). Kandungan air volumetrik, θ, didefinisikan secara matematis sebagai: di mana (Vw) adalah volume air dan (Vt) adalah total volume (yaitu volume tanah + volume air + ruang udara). Kandungan air gravimetrik dinyatakan berdasarkan massa (berat) sebagai berikut: di mana (mw) adalah massa air dan (mb) adalah massa bulk. Massa bulk diambil sebagai massa total, kecuali untuk aplikasi ilmu tanah dan rekayasa tanah di mana tanah yang dikeringkan dalam oven ((md), lihat diagram) secara konvensional digunakan sebagai (mb). Untuk mengonversi kandungan air gravimetrik ke kandungan air volumetrik, kalikan kandungan air gravimetrik dengan berat jenis bulk bahan. Dalam mekanika tanah dan rekayasa petroleum, istilah saturasi air atau derajat saturasi, \(S_w\), digunakan, yang didefinisikan sebagai: di mana (e) adalah porositas dan (n) adalah volume rongga atau ruang pori. Nilai (Sw) dapat berkisar dari 0 (kering) hingga 1 (tersaturasi). Secara nyata, (Sw) tidak pernah mencapai 0 atau 1 - ini adalah idealisasi untuk penggunaan rekayasa. Kandungan air ternormalisasi, (Se) (juga disebut sebagai saturasi efektif atau (Se)), adalah nilai tanpa dimensi yang didefinisikan oleh van Genuchten sebagai: di mana (theta) adalah kandungan air volumetrik; (theta_r) adalah kandungan air residual, yang didefinisikan sebagai kandungan air di mana gradien (frac{dS_e}{dtheta} ) menjadi nol; dan (theta_s) adalah kandungan air terjenuh, yang setara dengan porositas. Bahan yang digunakan untuk sensor kelembapan tanah bervariasi tergantung pada teknologi dan aplikasinya. Berikut adalah beberapa jenis umum sensor kelembapan tanah beserta bahan yang biasanya terlibat: 1. Sensor Time Domain Reflectometry (TDR): 2. Sensor Kapasitansi: 3. Sensor Resistansi atau Impedansi: 4. Sensor Dielektrik: 5. Tensiometer: 6. Sensor Gravimetrik: 7. Sensor Serat Optik: pada rangkaian ini kita mengggunakan tipe sensor Resitansi yang mengukur kandungan air pada tanah Rain sensor atau sensor hujan adalah jenis sensor yang berfungsi mendeteksi terjadinya hujan atau tidak. Pada sensor ini, terdapat integrated circuit atau IC (komponen dasar yang terdiri dari resistor, transistor, dan lain-lain) komparator yang berfungsi memberikan sinyal berupa logika ‘on’ dan ‘off’. Sehingga ketika sensor mendeteksi adanya hujan, wiper mobil secara otomatis akan berfungsi tanpa harus mengaktifkan saklar manual. Sensor hujan juga mampu mengatur kecepatan wiper saat menyeka air hujan di kaca mobil, mulai dari posisi low, intermittent, hingga high speed. Pengaturan tersebut tergantung dari curah hujan yang menerpa kaca mobil. AO : Adalah ouptut analog dari sensor, memiliki rentang dari 0 - 5V DC DO: Adalah output digital dari sensor, hanya bisa mengoutpukan nilai 0 atau 5V saja. Memiliki nilai threshold yang bisa diubah dengan mengatur sensitivitas sensor melalui potentiometer. VCC : Tegangan input untuk sensor GND : GND sensor Cara Kerja Sensor Rain: Rain sensor (FC 37) terdiri dari 2 bagian, yakni modul sensor untuk memproses hasil pembacaan, dan pad sebagai elemen sensing untuk mendeteksi tetesan hujan. Pad inilah bagian dari sensor yang digunakan untuk mendeteksi apakah terdapat tetesan hujan atau tidak. Pad sensing ini biasanya terdiri dari 2 buah lapisan, yakni lapisan atas dan lapisan tengah. Lapisan atas dari pad ini terdiri dari kolom lubang yang dilapisi oleh tembaga, dan lapisan tengah dari sensor ini diprint dengan jalur tembaga seperti gambar dibawah ini: Lapisan atas: Lapisan Tengah: Lubang - lubang dari lapisan atas dari sensor tersebut, terhubung secara internal ke jalur tembaga pada lapisan tengah sensor. Dapat dilihat pada lapisan atas sensor terdapat batasan dengan dimensi kecil, batasan ini diletakkan agar tetesan air hujan yang mengenai sensor tidak terpantul ke luar dan tetap berada pada lapisan sensor. Cara dari sensor mendeteksi tetesan air hujan adalah berdasarkan resistansi dari sensor tersebut. Ketika tidak terdapat tetesan hujan pada pad sensor, maka konduktivitas pada pad tersebut kecil atau dengan kata lain resistansi dari pad tersebut semakin tinggi. Dan kondisi sebaliknya, apabila pada pad sensor tersebut terdapat tetesan air hujan yang memiliki properti konduktivitas yang baik, maka permukaan (surface) dari sensor tersebut memiliki konduktivitas yang tinggi, hal ini mengakibatkan resistansi pada sensor itu semakin mengecil. Untuk ilustrasinya bisa dilihat dibawah ini: Ketika hujan turun, tetesan air menyentuh elektroda, membentuk jalur konduktif. Air tersebut mengandung mineral atau elektrolit yang meningkatkan konduktivitas listrik antara elektroda. Sensor mendeteksi perubahan ini dan mengirimkan sinyal ke sirkuit elektronik terhubung. Sirkuit elektronik ini memiliki peran penting. Itu menganalisis perubahan konduktivitas dan memberikan respons sesuai. Respons ini bisa berupa mengaktifkan perangkat lain, seperti sistem irigasi atau lampu penerangan otomatis. Dengan kata lain, sensor rain aktif karena adanya sirkuit elektronik yang memungkinkannya memberikan tanggapan atau aksi spesifik berdasarkan kondisi hujan yang terdeteksi. Komponen Sensor Hujan
Sensor hujan, juga dikenal sebagai sensor rain, adalah perangkat elektronik yang dirancang khusus untuk mendeteksi dan mengukur keberadaan serta intensitas hujan. Manfaat sensor ini sangat beragam. Pertama, sensor hujan digunakan dalam stasiun cuaca dan instalasi meteorologi untuk memberikan informasi yang akurat terkait intensitas hujan, membantu pemodelan cuaca dan pemantauan kondisi atmosfer. Kedua, dalam bidang pertanian, sensor hujan dapat diintegrasikan dengan sistem irigasi otomatis untuk mengoptimalkan penggunaan air dan mencegah penyiraman berlebihan saat hujan. Selain itu, sensor hujan juga dimanfaatkan dalam industri otomotif untuk mengontrol otomatis kaca depan kendaraan, mengatur kecepatan penghapus kaca berdasarkan intensitas hujan. Manfaat lainnya termasuk penggunaan dalam sistem peringatan banjir dan integrasi dengan rumah pintar untuk mengendalikan otomatis atap, jendela, atau sistem drainase. Secara umum, sensor hujan beroperasi dengan berbagai metode, termasuk pengukuran konduktivitas, kapasitansi, pengukuran optis, dan pemanfaatan getaran, memberikan keberagaman solusi untuk aplikasi yang berbeda. Dengan demikian, sensor hujan menjadi komponen penting dalam pemantauan dan pengendalian berbagai aspek yang dipengaruhi oleh kondisi cuaca. Perangakat sensor hujan di atas bisa diaplikasi menjadi beberapa perangkat yang mungkin akan sangat berguna pada saat musim hujan. Misalnya dibuat menjadi alat jemuran yang akan otomatis menutup pada saat hujan turun, atau digunakan pada jendela otomatis. Namun rancangan yang ada saat ini saya gunakan untuk membuat jemuran, yang mana pada jemuran tersebut akan secara otomatis menutup pada saat hujan turun. Berikut ini akan dijelaskan prinsip kerja dari pada sensor hujan di atas. Pada rankaian panel sensor yang ditandai dengan nomor 1, panel ini sebenarnya terpisah dengan board PCB utama begitu pula dengan motor,magnet sensor. panel sensor hujan ini akan dipasang di area terbuka, dimana air hujan akan mengenai board panel tersebut. panel ini terbuat dari board PCB biasa yang dibuat menjadi sebuah rangkaian seperti yang ada di atas. Untuk menghindari karat karena air hujan sebaiknya tembaga dilapisi oleh timah. Prinsip kerja dari rangkaian ini adalah, dimana pada saat air hujan mengenai panel sensor, maka akan terjadi proses elektrolisasi oleh air hujan tersebut karena air hujan termasuk kedalam cairan elektrolit yaitu cairan yang dapat menghantarkan arus listrik,meskipun sangat kecil dan proses ini akan menyebabkan keadaan aktif yang akan mengaktifkan relay 9. Dimana pada saat relay 9 aktif motor akan menarik penutup dan setelah penutup ditarik ke pangkal ujung maka motor akan berhenti secara otomatis. Hal ini terjadi karena pada saat penutup berada di pangkal ujung magnet akan mengenai sensor magnet yang ada di pangkal ujung yang kemudian akan mengaktifkan relay 12 sehingga arus yang mengalir ke motor akan terhenti. Pada saat hujan berhenti dan proses elektrolisasi berhenti, maka keadaan akan menjadi pasif dan relay 9 pun akan kembali pasif sementara relay 12 dalam keadaan aktif, kemudian motor akan menarik penutup ke arah sebaliknya, sehingga menjadi terbuka kembali. Pada saat penutup meninggalkan pangkal ujung magnet yang ada pada penarik akan menjauh dari sensor yang berada di pangkal ujung atau 12 sehingga sensor magnet kembali pasif dan relay 12 pun akan pasif. Pada saat penutup sudah tiba di pangkal awal, maka magnet akan kembali mendekat ke sensor magnet yang ada pada pangkal awal, sehingga relay 11 akan aktif dan motor akan berhenti bergerak. jenis-jenis sensor rain
Pada rangkaian menggunakan raindrop sensor circuit diagram sensor
Sensor ini biasanya digunakan dalam perancangan detektor gerakan berbasis PIR. Karena semua benda memancarkan energi radiasi, sebuah gerakan akan terdeteksi ketika sumber infra merah dengan suhu tertentu (misal: manusia) melewati sumber infra merah yang lain dengan suhu yang berbeda (misal: dinding), maka sensor akan membandingkan pancaran infra merah yang diterima setiap satuan waktu, sehingga jika ada pergerakan maka akan terjadi perubahan pembacaan pada sensor. Sensor PIR terdiri dari beberapa bagian yaitu : 1. Fresnel Lens Lensa Fresnel pertama kali digunakan pada tahun 1980an. Digunakan sebagai lensa yang memfokuskan sinar pada lampu mercusuar. Penggunaan paling luas pada lensa Fresnel adalah pada lampu depan mobil, di mana mereka membiarkan berkas parallel secara kasar dari pemantul parabola dibentuk untuk memenuhi persyaratan pola sorotan utama. Namun kini, lensa Fresnel pada mobil telah ditiadakan diganti dengan lensa plain polikarbonat. Lensa Fresnel juga berguna dalam pembuatan film, tidak hanya karena kemampuannya untuk memfokuskan sinar terang, tetapi juga karena intensitas cahaya yang relative konstan diseluruh lebar berkas cahaya. 2. IR Filter IR Filter dimodul sensor PIR ini mampu menyaring panjang gelombang sinar infrared pasif antara 8 sampai 14 mikrometer, sehingga panjang gelombang yang dihasilkan dari tubuh manusia yang berkisar antara 9 sampai 10 mikrometer ini saja yang dapat dideteksi oleh sensor. Sehingga Sensor PIR hanya bereaksi pada tubuh manusia saja. 3. Pyroelectric Sensor Seperti tubuh manusia yang memiliki suhu tubuh kira-kira 32 derajat celcius, yang merupakan suhu panas yang khas yang terdapat pada lingkungan. Pancaran sinar inframerah inilah yang kemudian ditangkap oleh Pyroelectric sensor yang merupakan inti dari sensor PIR ini sehingga menyebabkan Pyroelectic sensor yang terdiri dari galium nitrida, caesium nitrat dan litium tantalate menghasilkan arus listrik. Mengapa bisa menghasilkan arus listrik? Karena pancaran sinar inframerah pasif ini membawa energi panas. Material pyroelectric bereaksi menghasilkan arus listrik karena adanya energi panas yang dibawa oleh infrared pasif tersebut. Prosesnya hampir sama seperti arus listrik yang terbentuk ketika sinar matahari mengenai solar cell. *Grafik respon sensor PIR 1. Respon terhadap arah, jarak, dan kecepatan Pada grafik tersebut ; (a) Arah yang berbeda mengasilkan tegangan yang bermuatan berbeda ; (b) Semakin dekat jarak objek terhadap sensor PIR, maka semakin besar tegangan output yang dihasilkan ; (c) Semakin cepat objek bergerak, maka semakin cepat terdeteksi oleh sensor PIR karena infrared yang ditimbulkan dengan lebih cepat oleh objek semakin mudah dideteksi oleh PIR, namun semakin sedikit juga waktu yang dibutuhkan karena sudah diluar jangkauan sensor PIR. 2. Respon terhadap suhu Dari grafik, didapatkan bahwa suhu juga mempengaruhi seberapa jauh PIR dapat mendeteksi adanya infrared dimana semakin tinggi suhu disekitar maka semakin pendek jarak yang bisa diukur oleh PIR. circuit diagram sensor PIR membutuhkan waktu untuk menstabilkan dirinya tergantung pada kondisi sekitar, sehingga Anda mungkin menemukan LED menyala dan mati secara acak selama sekitar 10-60 detik. Sekarang, ketika kita melihat LED berkedip setiap kali ada gerakan, lihat bagian belakang PIR. Anda akan menemukan sebuah jumper yang ditempatkan antara PIN sudut luar dan PIN tengah (lihat diagram di atas). Ini disebut "non-retriggering" atau "Non-repeatable trigger," dan jumper dikatakan berada dalam posisi L. Dalam posisi ini, LED akan berkedip terus-menerus sampai ada gerakan. Selanjutnya, jika Anda menghubungkan jumper ini antara PIN sudut dalam dan PIN tengah, maka LED akan tetap menyala sepanjang waktu sampai ada gerakan. Ini disebut "retriggering" atau "Repeatable trigger," dan jumper dikatakan berada dalam posisi H Terdapat dua potensiometer (ditunjukkan dalam gambar di atas), digunakan untuk mengatur waktu tunda dan jarak deteksi. Waktu tunda adalah durasi di mana LED akan tetap menyala (pin keluar HIGH). Pada pemicu yang tidak dapat diulang, OUTPUT akan menjadi rendah secara otomatis setelah waktu tunda. Pada pemicu yang dapat diulang, OUTPUT juga akan menjadi rendah setelah waktu tunda, tetapi jika ada aktivitas manusia yang terus-menerus, OUTPUT akan tetap tinggi bahkan setelah waktu tunda. Putar potensiometer Penyesuaian Jarak searah jarum jam untuk meningkatkan jarak deteksi (sekitar 7 meter), sebaliknya, jarak deteksi berkurang (sekitar 3 meter). Putar potensiometer Penundaan Waktu searah jarum jam untuk memperpanjang waktu tunda sensor (600 detik, 10 menit), sebaliknya, mempersingkat waktu tunda (0,3 detik). Secara umum, PIR mendeteksi inframerah dengan panjang gelombang 8 hingga 14 mikrometer dan memiliki jangkauan 3-15 meter dengan sudut pandang kurang dari 180 derajat. Rentang ini dapat bervariasi tergantung pada modelnya. Beberapa PIR langit-langit dapat mencakup 360 derajat. PIR umumnya beroperasi pada 3-9V DC. Sensor PIR (Passive Infrared) mendeteksi perubahan suhu di sekitarnya dengan mengukur radiasi inframerah yang dipancarkan oleh benda atau objek. Berikut adalah beberapa material yang umumnya digunakan dalam pembuatan sensor PIR: 1. Material Piroelektrik:
2. Fotodioda Inframerah:
3. Pyroelectric Ceramic:
4. Lensa Fresnel:
5. Filter Inframerah:
Sensor PIR umumnya menggunakan kombinasi beberapa material ini untuk mencapai sensitivitas dan respons yang diinginkan terhadap perubahan suhu yang dihasilkan oleh objek yang bergerak dalam lingkungan di sekitarnya. |
4.1 Prosedur Percobaan
1. Siapkan semua alat dan bahan yang diperlukan
2. Disarankan agar membaca datasheet setiap komponen
3. Cari kompnen yang diperlukan di library proteus
4. Pasang dan simulasikan rangkaian tersebut
4.2 Rangkaian Simulasi
- Video Rangkaian Simulasi
- Video Teori Sensor
- Download File HTML klik disini
- Download Rangkaian klik disini
- Download Video Teori Sensor Rain klik disini
- Download Video Teori Sensor Sound klik disini
- Download Video Teori Sensor LDR klik disini
- Download Video Teori Sensor PIR klik disini
- Download Video Teori Sensor Soil Moisture klik disini
- Download Video Prinsip Kerja Rangkaian klik disini
- Download Datas Sheet Resistor klik disini
- Download Datasheet Dioda 1N4001 klik disini
- Download Datasheet Transistor NPN BC547 klik disini
- Download Datasheet Relay klik disini
- Download Datasheet LM358 Klik Disini
- Download Datasheet Kapasitor klik disini
- Download Datasheet Induktor klik disini
- Download Datasheet LED klik disini
- Download Datasheet Motor DC klik disini
- Download Datasheet Potensiometer klik disini
- Download Datasheet Sensor Sound klik disini
- Download Datasheet Sensor PIR klik disini
- Download Datasheet Rain Sensor kilik disini
- Download Datasheet LDR klik disini
- Download Datasheet XOR IC 4030: klik disini
- Download Datasheet NOT IC 7404 klik disini
- Download Datasheet Decoder 7447 [klik disini]
- Download Datasheet Encoder IC 74147 klik disini
- Download Datasheet Buzzer klik disini
- Download Datasheet Seven Segment klik disini
- Download Library Sensor Sound klik Disini
- Download Library Rain Sensor klik disini
- Download Library Sensor PIR klik disini
Tidak ada komentar:
Posting Komentar